Si 1 = 5, 2 = 15, 3 = 20, 4 = 25, ¿a qué equivale 5?

Creo que 5 debería ser igual a 35. He aquí por qué:

Veo esto como una secuencia, donde hay un conjunto de 5, 15, 20, 25, y debemos encontrar el siguiente término. Podemos resolver esto como resolvemos ecuaciones cuadráticas y cúbicas.

Por lo tanto, usando este método, comenzamos con la secuencia 5, 15, 20, 25 y encontramos las diferencias respectivamente, obteniendo una nueva secuencia, 10, 5, 5. Haciendo eso una vez más, obtenemos -5, 0. Finalmente, nosotros Obtenga el número 5 de los últimos 2 números. Agregamos a la secuencia otros 5, para que se convierta en la secuencia 5, 5, y solo agregando un número pequeño, tiene la respuesta. Agregas 5 al 0 en la secuencia de arriba y extiendes esa secuencia a -5, 0, 5. Luego agregas los últimos 5 a los 5 en la secuencia de arriba, ampliando la secuencia a 10, 5, 5, 10 Finalmente, sumas el 10 al 25 en la primera secuencia, para obtener 35, y así es como obtienes tu respuesta final.

Lo que esto realmente debería decir es si f (1) = 5, f (2) = 15, etc .; de lo contrario, está redefiniendo lo que significan los números o el signo igual, y la pregunta debería ser ¿qué es f (5)? De lo contrario, solo diré que 5 es igual a cinco porque no hay un sistema coherente de matemáticas en el que esto no sea cierto. (Por supuesto, si 1 = 5, 5 = 1). Sin embargo, parece que accidentalmente se ha omitido un número. Parece que se suponía que la función era 5x o 5 (x + 1), pero las respuestas estaban en mal estado. Sin embargo, podría haber un número infinito de funciones que tienen los valores descritos anteriormente, por lo que no hay forma de saber qué es f (5) de la información dada.

P: ¿Cuántas patas tiene un perro si llamas cola a una pata?

A: cuatro. Llamar a una cola pierna no la convierte en una.

En este caso, 5 = 5. Decir que es igual a 1 no lo hace así.

¡Hay muchas respuestas!

  1. 1 = 5 Por lo tanto, 5 es igual a uno
  2. 2 = 15 2/3 = 5 Por lo tanto, 5 es igual a 2/3
  3. 3 = 20 3/4 = 5 Por lo tanto, 5 es igual a 3/4
  4. 4 = 25 4/5 = 5 Por lo tanto, 5 es igual a 4/5
  5. 4 = 25 2 = 5 Por lo tanto, 5 es igual a 2

Probablemente hay muchas más soluciones que no mencioné, ¡pero estas son solo algunas!

Según la ecuación dada si 1 = 5, entonces 5 = 1.

A veces las observaciones son más importantes que el pensamiento lógico.

Sin aplicar muy profundo en todos y cada uno … podemos mantener la vida simple

¡Jesucristo! Después de escribir la respuesta fui a ver otras respuestas, me sorprendió ver tanta matemática.

No gravo mucho mi cerebro, espero haber hecho un intento justo.

No se deje engañar ni por las reglas normales y requeridas de las matemáticas ni por pensar demasiado usando una lógica hermosa. Si abandona la desconcertante parte “1 = 5” de la declaración y deja de lado las reglas relativas a “=”, se queda con esta progresión: 15, 20, 25. Entonces, si puede ignorar el “=” y los números precediendo el “=”, la respuesta obvia es “30”. Pero no soy muy bueno en matemáticas o obedeciendo reglas. ¡Adelante, trolls y dulces inteligentes, y castíganme, necesito una buena paliza!

Acabo de calcular la respuesta, suponiendo que una función polinómica describe el problema.

Este es el cálculo:

Esta es la trama:

El resultado es 35.

Si consideramos este problema como una definición de una secuencia que comienza con 1, 2, 3, 4 … en lugar de una definición estricta de la ecuación y la tarea es derivar el quinto miembro de la secuencia siguiendo las pistas en el patrón proporcionado para Los primeros 4 miembros de la secuencia. Aquí hay una posible solución.

1 = 5, 2 = 15, (1 + 2) = 3 = (5 + 15) = 20, (1 + 3) = 4 = (5 + 20) = 25, (Tenga en cuenta que (2 + 2) = 4 = (15 + 15) = 30 rompe la secuencia dada, lo que nos da una pista de que el siguiente miembro de la secuencia debe seguir un patrón de 1 + N), es decir (1 + 4) = 5 = (5 + 25) = 30, en lugar de (2 + 3) = 5 = (15 + 20) = 35.

¿5 = 1 ya que tienes 1 = 5?

A menos que quiera decir f (1) = 5, f (2) = 15, f (3) = 20, f (4) = 25, ¿entonces desea encontrar f (5) =? Si esto es lo que quieres decir, comenta para que pueda ayudar de cualquier manera que pueda.

¡Todo lo mejor!

Umm, esto no tiene sentido

Si 1 = 5, entonces 5 debería ser igual a 1

1 + 4 = 5 + 25 = 30

2 + 3 = 15 + 20 = 35

4 + 3–2 = 25 + 20–15 = 30

Pero si olvidamos todo esto y consideramos estas tonterías como una progresión solo para justificar una respuesta, entonces no tiene sentido

2 = 3 * 5

3 = 4 * 5

4 = 5 * 5

Pero según la pregunta 1 no es igual a 2 * 5

¡¡Me rindo!!

“Si 1 = 5, 2 = 15, 3 = 20, 4 = 25, ¿a qué equivale 5?”

La respuesta es “papa”.

Una implicación “si p , entonces q ” tiene la propiedad de que si p es falsa, la implicación debe ser verdadera, sin importar el valor de q . Y tu p es bastante falsa.

Tal vez habías querido decir algo diferente, como f (1) = 5, etc. para alguna función f . En ese caso, f (5) todavía no se determina de manera única y aún podría ser “papa”.

Parece que tal vez lo que realmente quiere decir es encontrar la f “más simple” (lo que sea que eso signifique) y luego evaluar esa función en 5. En ese caso, debe especificar qué tipo de simplicidad prefiere.

5 = 30

Por favor, corríjame si estoy equivocado.

De consideración:

Realidad de tipo (*)

* 1 = 5 (* 1 × 5 = 5), * 2 = 15 (* 3 × 5 = 15), * 3 = 20 (* 4 × 5 = 25),

* 5 = * 30 (* 6 × 5 = 30). Como (comúnmente) tenemos problemas con las conversiones numéricas, como en este caso, * 1 denota * 1 × 5 = 5, vemos * 2 denotando * 3 × 5 = 15, por lo tanto, para * 3 encontramos * 4 × 5 = 20 , siguiente * 4 traduciendo a * 5 × 5 = 25. Dejando a mentes teóricas mucho más grandes que las mías, ya que encontramos que * 5 calcula a * 6 × 5 = * 30 …

Para * 1 (1 × 5), * 2 (3 × 5), * 3 (4 × 5), * 4 (5 × 5) y, por último, * 5 (6 × 5). Suma: * 1 = 5; * 2 = 15; * 3 = 20; * 4 = 25; y * 5 = 30.

Mi turno termina en 30 minutos, 0700. Más pensamientos para considerar sobre este problema bastante interesante algún tiempo después, ya que espero que esta noche, después de descansar hoy, pueda encontrar un medio teórico para colocar en su lugar las últimas piezas de este rompecabezas teórico.

Para todos y cada uno de los que podrían encontrar este esfuerzo hasta ahora, espero que tengan un gran día …

MONTE

No hay una sola respuesta definitiva a esta pregunta. Si comienza diciendo 1 = 5, tenemos que creer que el significado habitual de los números no se aplica, el significado habitual de “=” no se aplica, o ambos.

Si el significado habitual de los números no se aplica pero “=” todavía significa “igual” en el sentido normal (tal vez los números actúan como variables), entonces puede darle la vuelta para obtener un mínimo, 5 es igual a 1 y 5 es igual a 5 (usando el sentido habitual de “es igual”.

Pero si “=” no significa “igual”, entonces las declaraciones al principio no nos brindan información sobre la igualdad, independientemente de si interpretamos los números en su sentido normal, y lo único que podemos decir con certeza es que 5 es igual a 5 .

Un poco de una pregunta capciosa. Como se dijo anteriormente, 1 = 5. Entonces, 5 es igual a 1. Tenga en cuenta que no siempre sigue un patrón, especialmente cuando la evidencia niega el patrón aparente.

1? Para cualquier definición razonable de igualdad, es simétrica. Como ya dijo 1 = 5, también deberíamos tener 5 = 1.