Calcule la variación del coeficiente a partir de los siguientes datos: 8,10,12,15,9,11,16,10,13,9,8,12,10,14,13,15,16,17

No. de muestras

18 años

Media

12.1111

Desviación Estándar

2.9081

Coeficiente de varianza

0.2401

Cálculo paso a paso:

Entrada: 8, 10, 12, 15, 9, 11, 16, 10, 13, 9, 8, 12, 10, 14, 13, 15, 16, 17

Media (µ) = (8 + 10 + 12 + 15 + 9 + 11 + 16 + 10 + 13 + 9 + 8 + 12 + 10 + 14 + 13 + 15 + 16 + 17) / 18
Media = 218/18
µ = 12.1111

= √ ((1 / 18-1) * (8-12.1111) 2+ (10-12.1111) 2

+ (12-12.1111) 2+ (15-12.1111) 2

+ (9-12.1111) 2+ (11-12.1111) 2+ (16-12.1111) 2

+ (10-12.1111) 2+ (13-12.1111) 2+ (9-12.1111) 2

+ (8-12.1111) 2+ (12-12.1111) 2+ (10-12.1111) 2

+ (14-12.1111) 2+ (13-12.1111) 2+ (15-12.1111) 2

+ (16-12.1111) 2+ (17-12.1111) 2)
= √ ((1/17) * (-4.1111

2

+ -2.1111

2

+ -0.1111

2

+ 2.8889

2

+ -3.1111

2

+ -1.1111

2

+ 3.8889

2

+ -2.1111

2

+ 0.8889

2

+ -3.1111

2

+ -4.1111

2

+ -0.1111

2

+ -2.1111

2

+ 1.8889

2

+ 0.8889

2

+ 2.8889

2

+ 3.8889

2

+ 4.8889

2

))
= √ (1/17) * (16.90114321 + 4.45674321 + 0.01234321 + 8.34574321 + 9.67894321 + 1.23454321 + 15.12354321 + 4.45674321 + 0.79014321 + 9.67894321 + 16.90114321 + 0.01234321 + 4.451321
= √ 8.45704561
σ = 2.9081

Coeficiente de varianza = σ / µ
= 2.9081 / 12.1111
Coeficiente de varianza = 0.2401